

ARCHIE –M Software

Presenter: Eng Jarome Mwazembee

Date: 01st November 2023

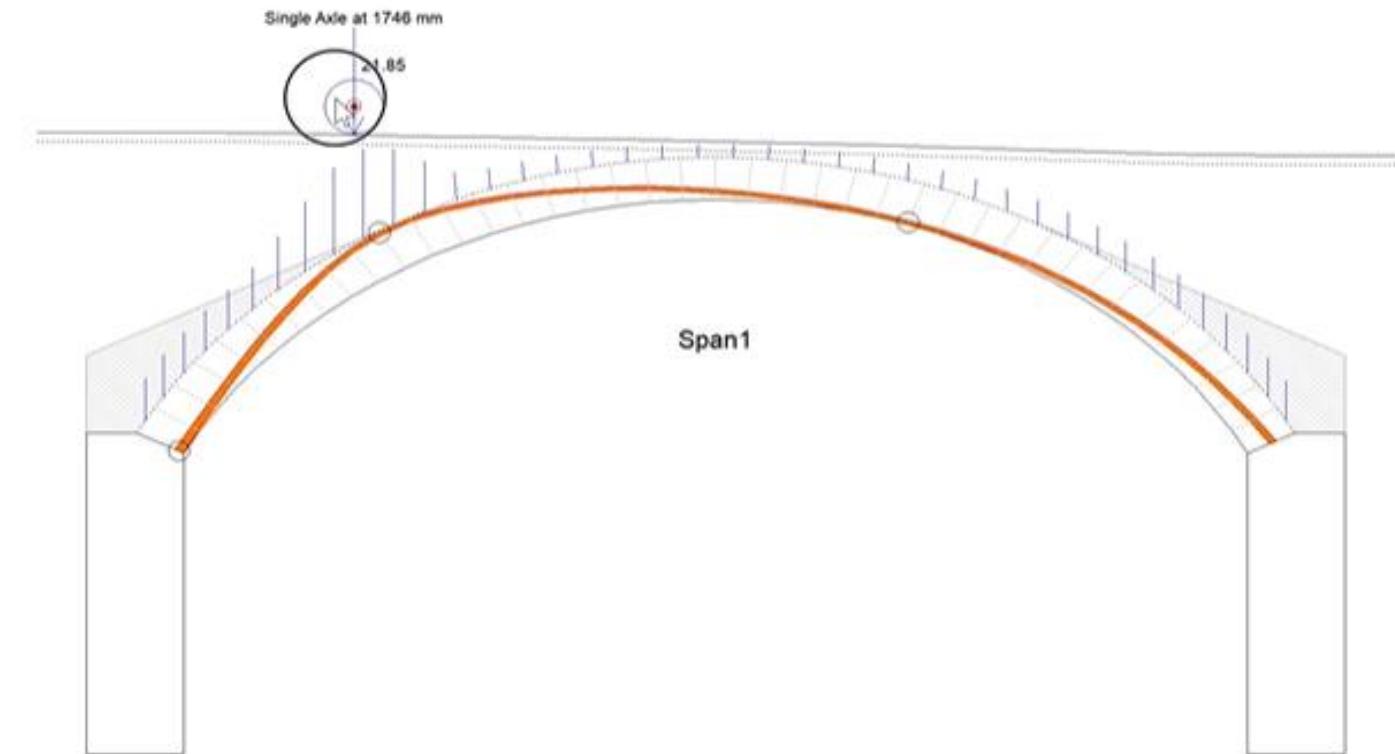
Venue: University of Dar Es Salaam UDSM

Belgian development agency

enabel.be

Content

- Introduction to software
- Input design parameters
- Input design geometry


1. Introduction to Archie-M software

- Archie-M is a standard assessment tool for masonry bridges in the UK rail network.
- The needs for assessing masonry bridges came on world war I MEXE was used now we have archie.M
- Versions of Archie have been in use since 1985. Now it has 40years and it is used worldwide.

Thrust line

- Understand that for our stone arch bridge to be safe and stable a line of thrust must stay within arch material after applying all load effect. ([Heyman in the 1950s](#))

Input design parameters based on DMRB CS454

- 10N/mm² masonry compressive strength.
- unit weight of 20kN/m³ for masonry.
- 18kN/m³ for backing and surface fill.

- Figure 1 shows the indicative compressive strength for the tested bridge in Kigoma region.
- The Rebound Number (RN) is converted into indicative compressive strength using conversion tables. Although the conversion has been developed for concrete, it also gives reasonable estimates for masonry. For improved accuracy, the rebound numbers can be calibrated for stone masonry based on test results

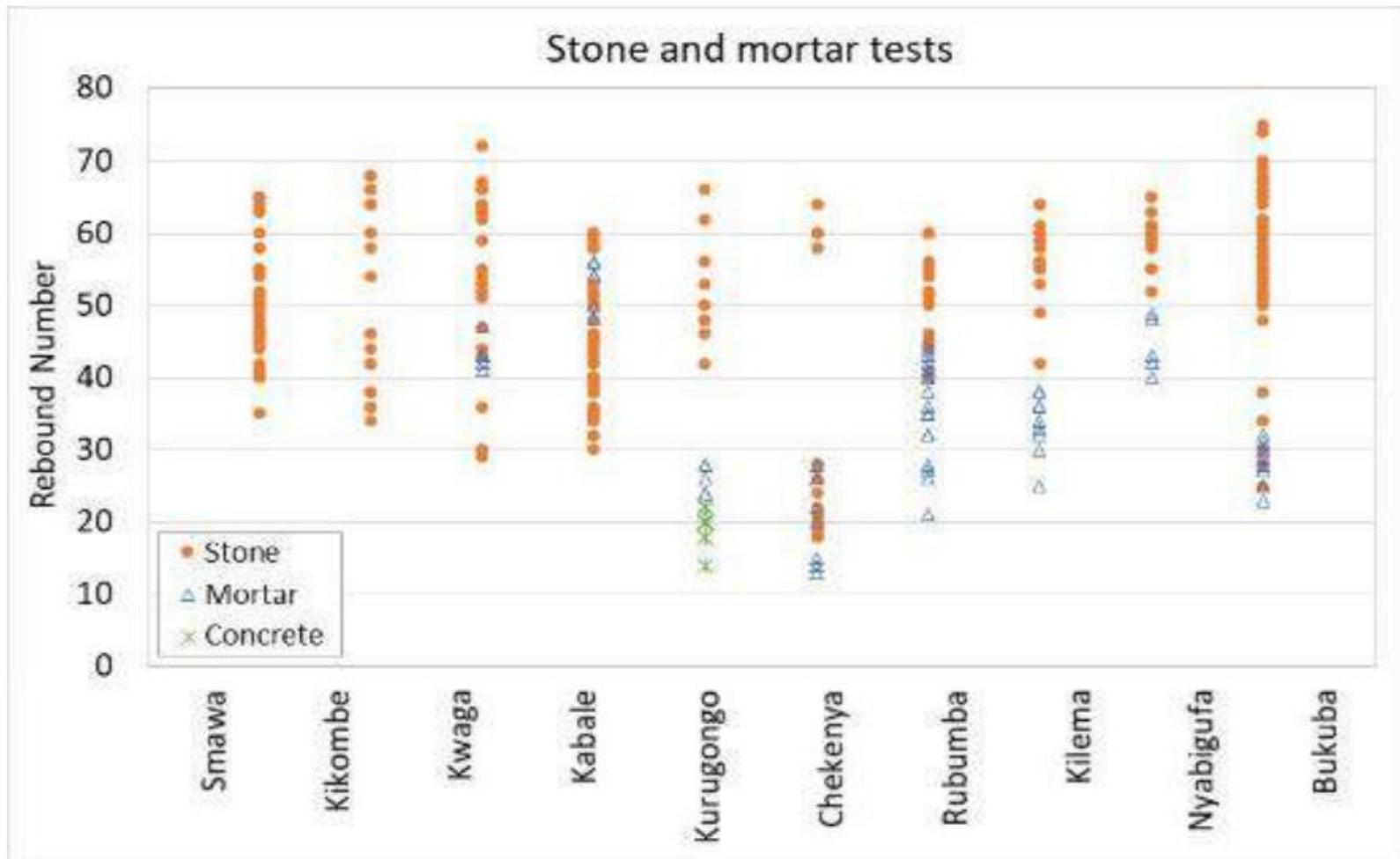
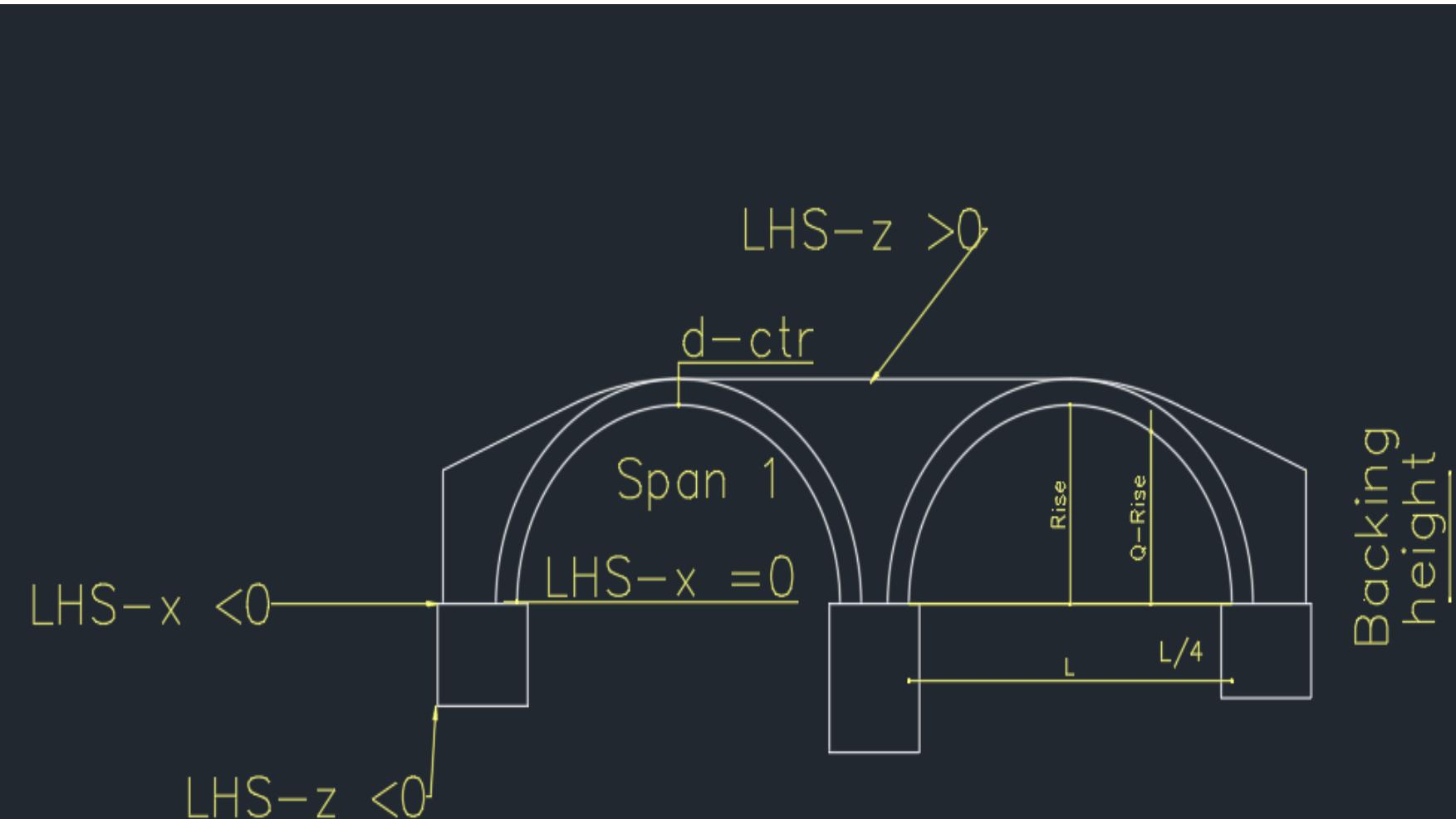
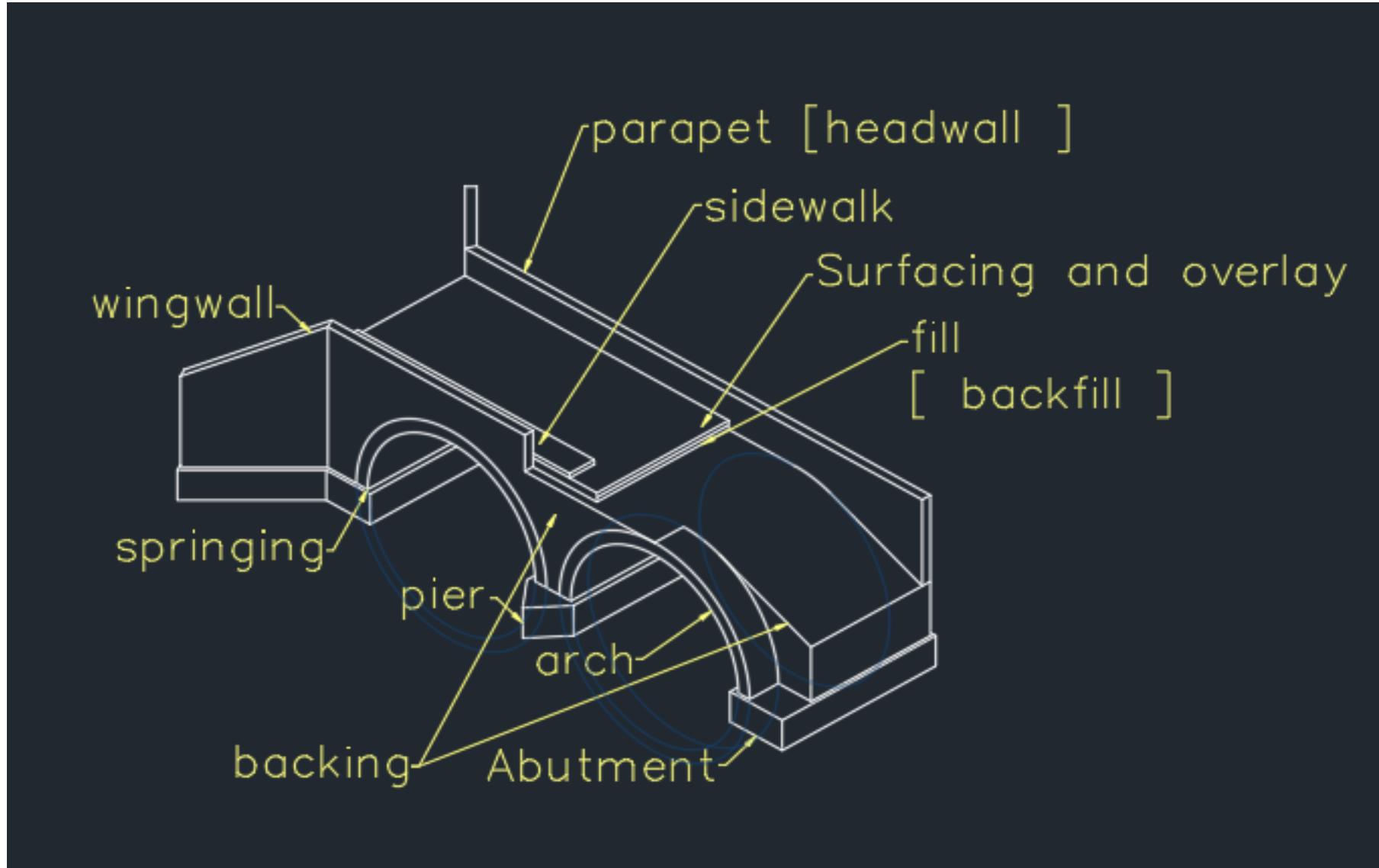



Figure 1 Relative mortar and stone strength for the tested bridges and indicative strength of softer mortars



Input design geometry

Terminologies

ARChIE –M Software

- 1. Create new bridge

Create a new bridge X

Number of spans:	<input type="text" value="4"/>
Name of bridge:	<input type="text" value="Ng'ong'ona"/>
Bridge number:	<input type="text" value="2023.15"/>
Location of bridge:	<input type="text" value="Dododm - UDOM"/>
Creator's name:	<input type="text" value="Jarome"/>
Checker's name:	<input type="text" value="Willem"/>
Revisor's name:	<input type="text" value="Willem"/>
Company name:	<input type="text" value="Enabel"/>
Date:	<input type="text" value="27 October 2023"/>

[< Back](#) [Next >](#) [Cancel](#)

Spans

Fill in your arch details

Arches X

Number of arches Skew bridge Identical arch geometries

Masonry strength [MPa] Skew [degree]: Ring factor = 1.0 for all spans

Masonry unit weight [kN/m³] Measured: Same mortar loss for all arches

Span	Shape	LHS:x	LHS:z	Span	Rise	Q-rise	d-ctr	d-spr	Mortar loss	
1	Circular	0	0	5200	2550	2220	380	380	20	
2	Circular	6340	0	5200	2550	2220	380	380	20	
3	Circular	12680	0	5200	2550	2220	380	380	20	
4	Circular	19020	0	5360	2550	2220	380	380	20	

< Back

Next >

Cancel

Pier, Abutments and Fill

Piers, abutments and fill X

Piers

Number of piers	<input type="text" value="3"/>	Masonry unit weight [kN/m ³]	<input type="text" value="20"/>
<input checked="" type="checkbox"/> Same base level for all		Masonry strength [MPa]	<input type="text" value="10"/>
<input checked="" type="checkbox"/> Same batter for all			

Pier	Base level	Top thickness	Batter (1:n)
1	-1900	1140	7
2	-1900	1140	7
3	-1900	1140	7

Abutments

<input type="checkbox"/> No abutments	Left	Right
Thickness at top [mm]	<input type="text" value="1140"/>	<input type="text" value="1140"/>
Level of base [mm]	<input type="text" value="-1000"/>	<input type="text" value="-1900"/>
Masonry strength [MPa]	<input type="text" value="5"/>	
Masonry unit weight [kN/m ³]	<input type="text" value="20"/>	

Fill

Unit weight [kN/m ³]	<input type="text" value="18"/>
Phi [degree]	<input type="text" value="30"/>

[< Back](#) [Next >](#) [Cancel](#)

Road alignments

Road

Road specification method

- One-point (horizontal)
- Two-point (straight slope)
- Three-point (circular segment)
- Multi-point (true shape, 7+ points)

Depth of surfacing [mm]

Depth of overlay [mm]

Surfacing unit weight [kN/m^3]

Overlay unit weight [kN/m^3]

Available width [mm]

Data points

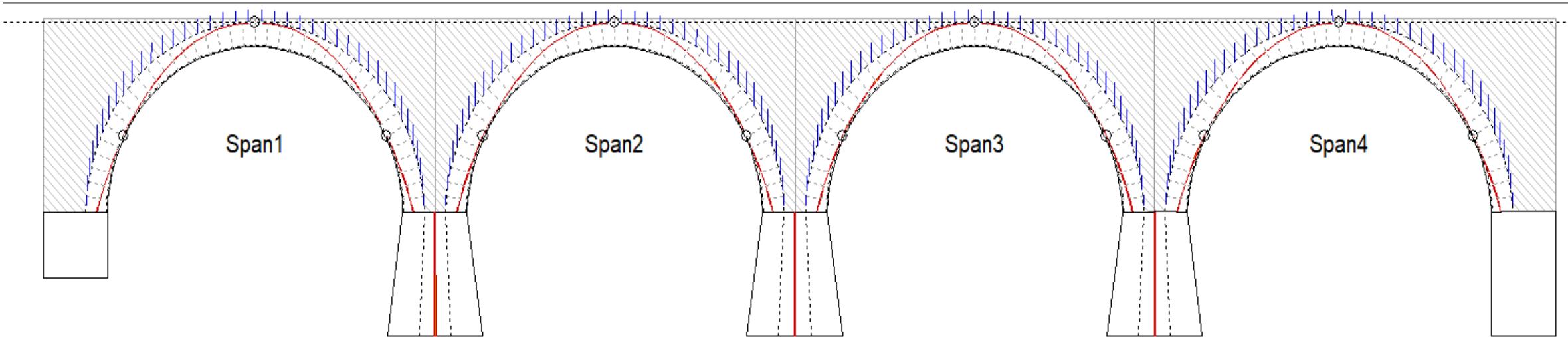
Add row Delete row Load from file

Point	X value	Z value
1.	0	3230

< Back Finish Cancel

Partial factors in standards and guidance CS454, C800

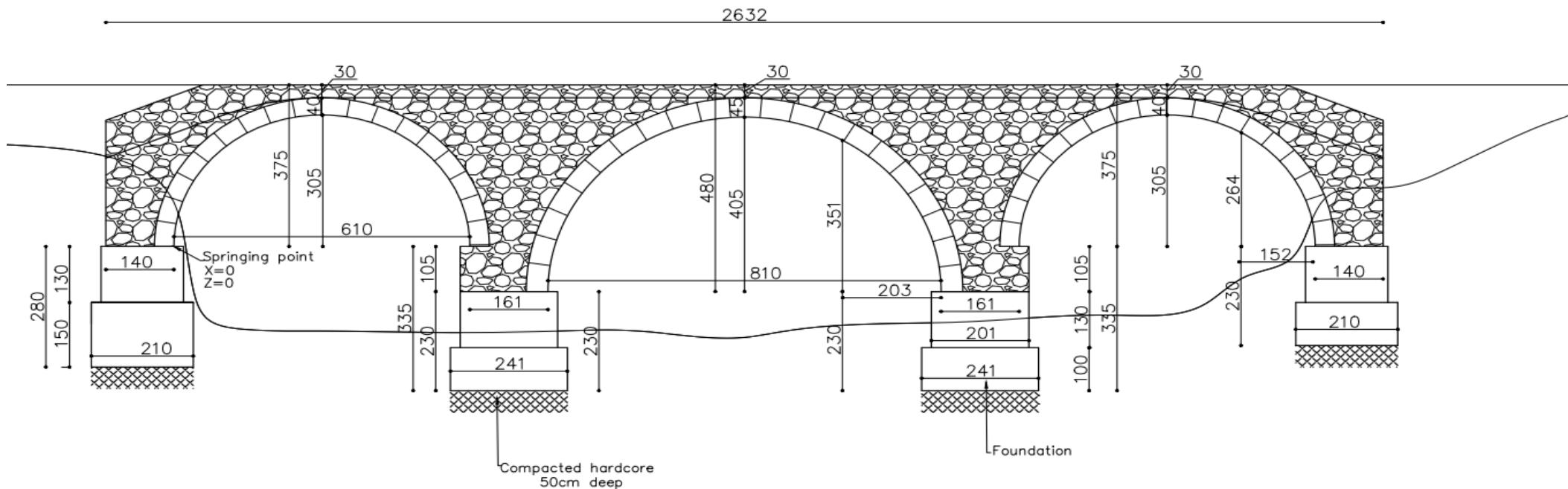
- Factor for live load (γf_L) (SLS | ULS)


Generally > 1.0 if and only if this gives a worse result than taking the value

as 1.0.

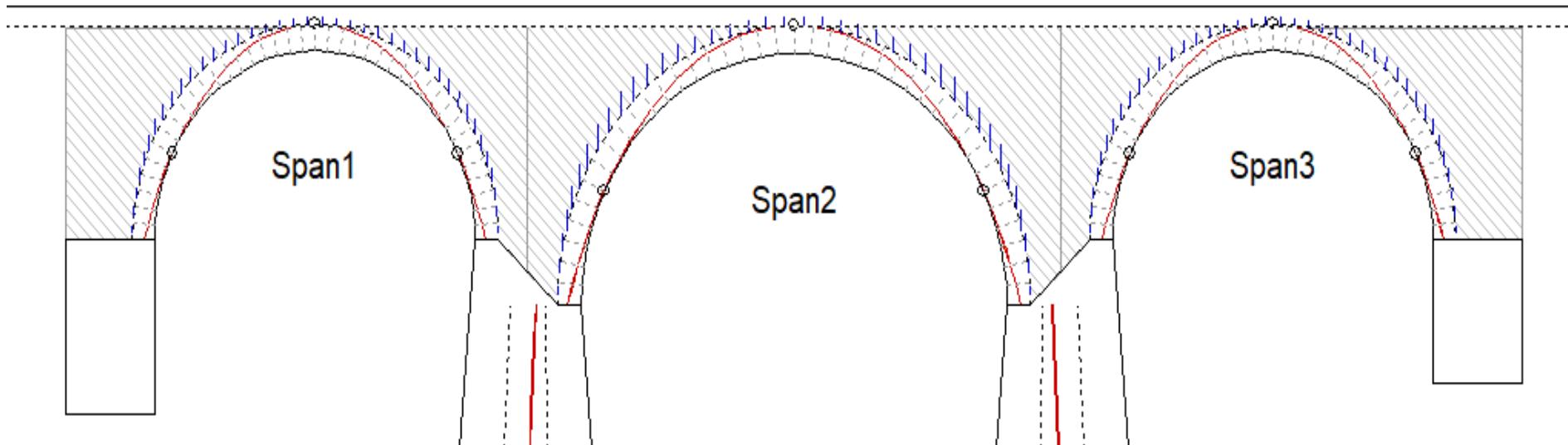
- γf_3 is a factor that takes account of inaccurate assessment of the effects of actions such as unforeseen stress distribution in the structure.
- For other Factors please [click here](#)

Your bridge will be displayed


Quiz

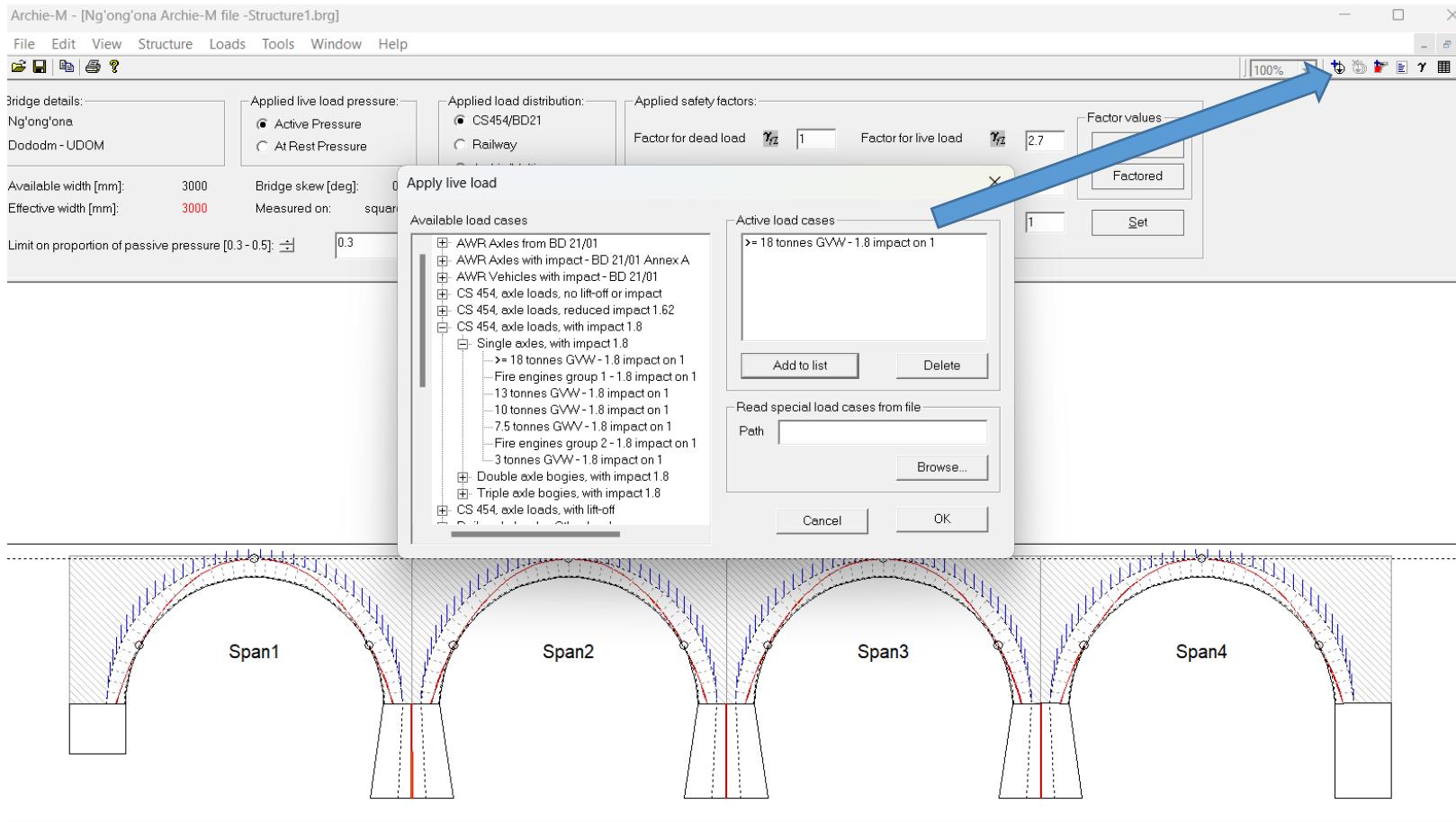
Quiz no 1.

1. Draw/Model a given section X-X' below of stone arch bridge in Archie M.


Bridge name; Mkeha, Location; Njombe Wanging'ombe District

- i. Full backing height
- ii. Mortar loss 20mm
- iii. Not same arch factor
- iv. Masonry strength 10Mpa
- v. Masonry Unit weight 20KN/m³
- vi.

Quiz results



Break for breack fast

Assess the bridge capacity by applying live loads

Checking thrust line for multspan arch bridges taking into account applied backing

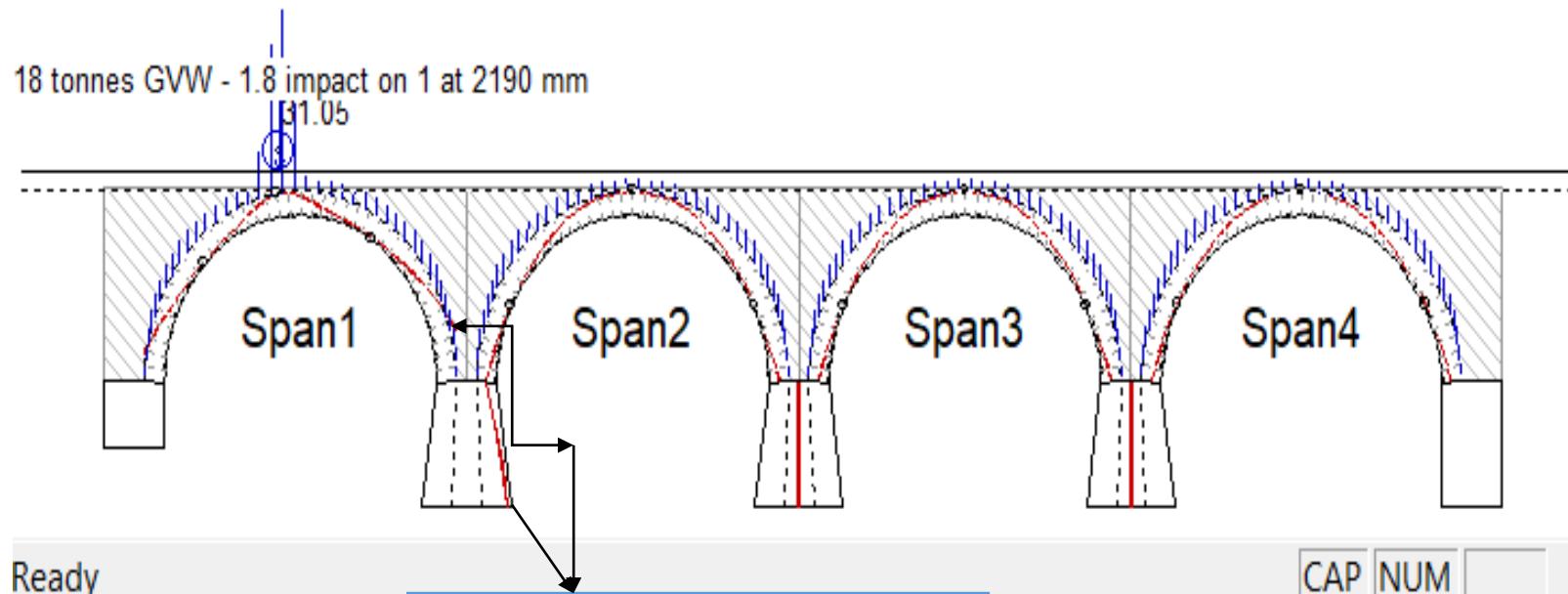
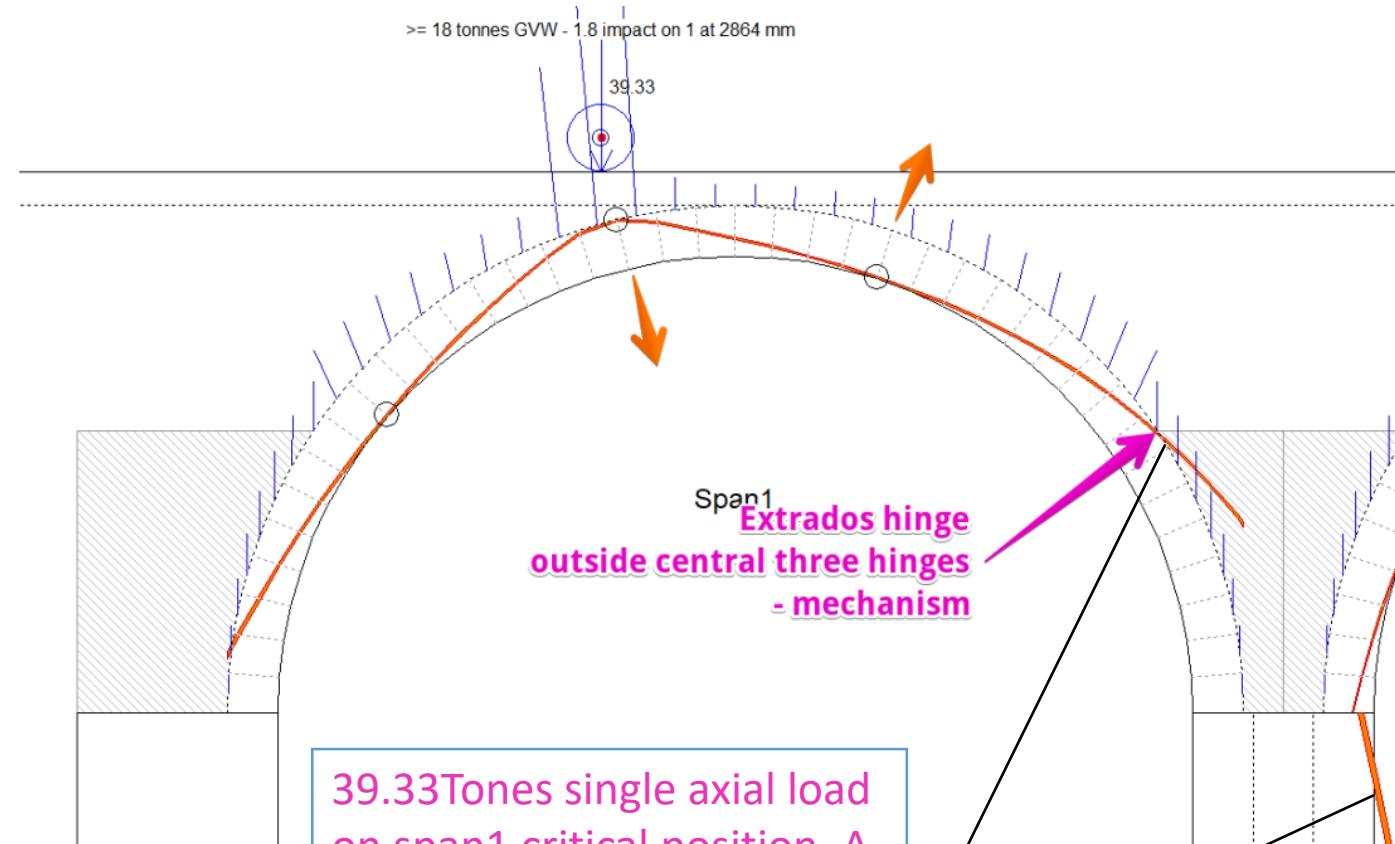



Figure 1:
Full backing

31.05Tones single axial load
on span1 critical position,
no failure as Thrust line
within pier and not out of
masonry.

Checking thrust line for multspan arch bridges taking into account applied backing

39.33Tones single axial load on span1 critical position, A bridge is not safe as Thrust line out of pier and out of backing masonry.

Figure 2:
Half backing
height

Checking thrust line for multspan arch bridges taking into account applied backing

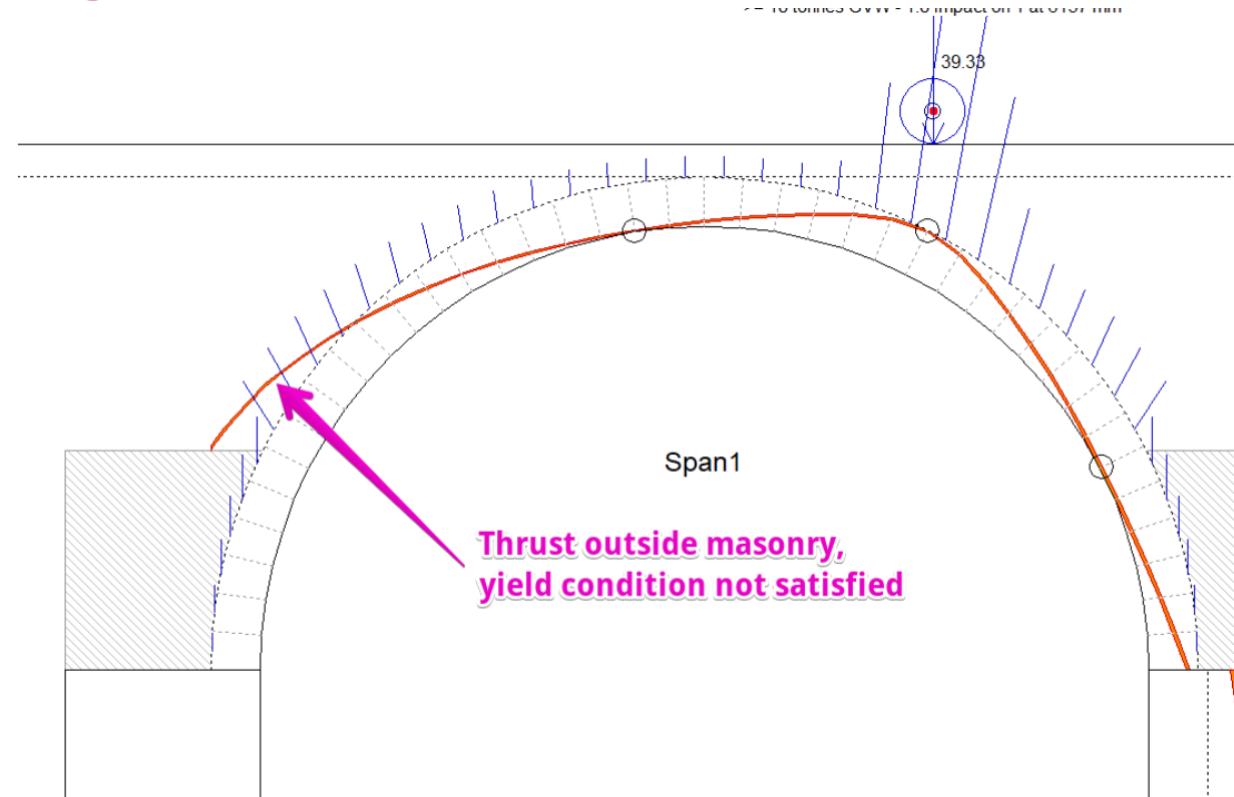


Figure 3:
Almost half
backing
height

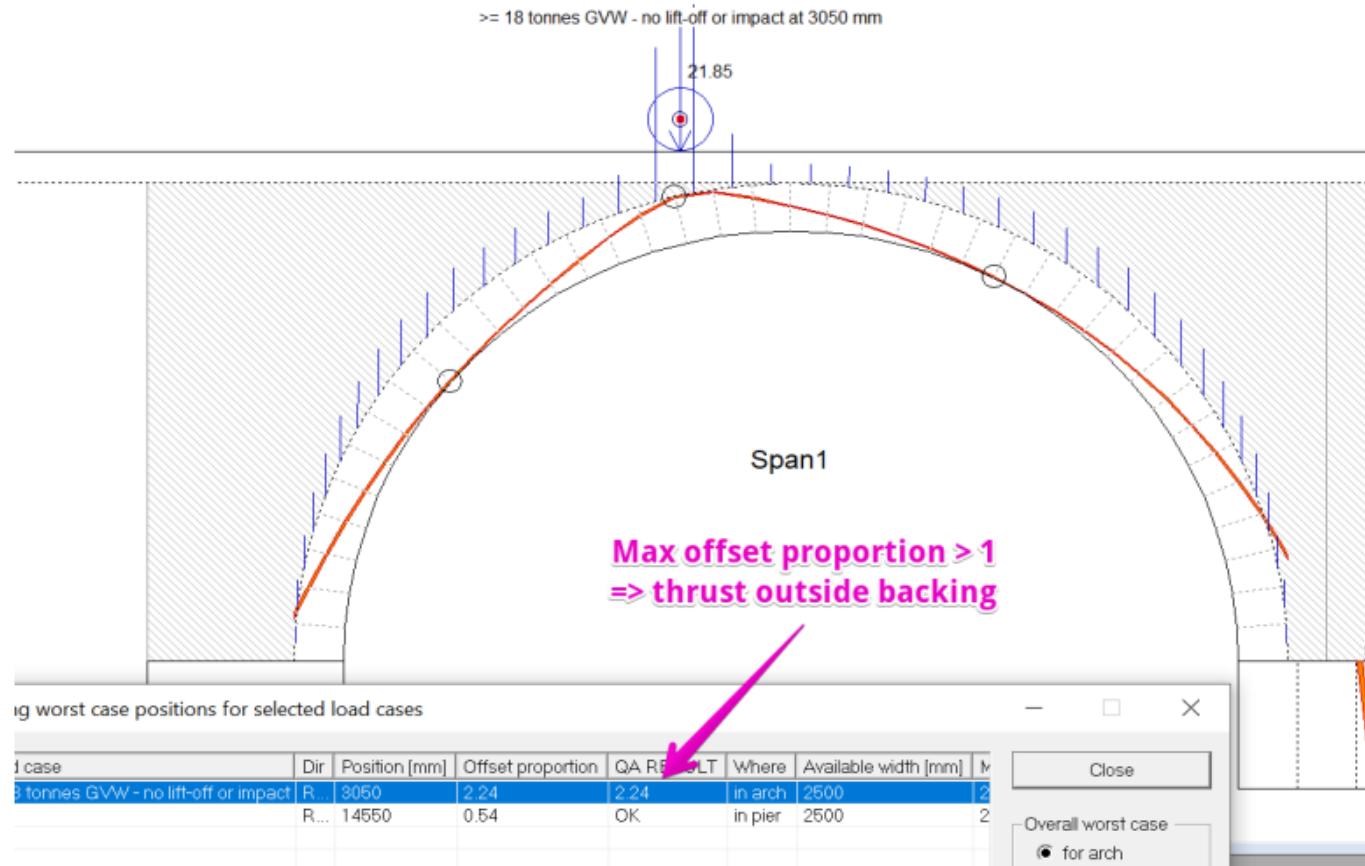
Comments

- Figure 1: With full height masonry, there is no possibility of a hinge forming at the extrados, because the masonry behind that point cannot compress or move out of the way. The only form of yield that could occur here is shear between the ring and the backing masonry. In a structure like this, there is really no possibility of a 4 bar mechanism forming.
- Figure 2 and 3: The thrust touches the extrados, so a hinge is present. The pattern of 4 hinges alternating between intrados and extrados forms a mechanism, so this structure might collapse, and would at least deform unacceptably (passive pressure from the full could stop full collapse; also bear in mind that we are applying a live load factor).

The corresponding results for figure 1 look like this:

r live	Fx passive	Fx total	Fz total	My total	Thrust in	Thrust out	Extra-Thrust	
30	0.00	-58.70	-172.07	-298.89	1728	1746	-1296	***
30	0.00	-73.50	-167.89	-279.03	1603	1620	-1170	***
30	0.00	-87.09	-161.65	-258.39	1482	1500	-1050	***
30	0.00	-99.43	-153.72	-237.29	1365	1383	-933	***
30	0.00	-110.49	-144.47	-215.99	1251	1268	-818	***
30	0.00	-120.27	-134.24	-194.70	1137	1154	-704	***
30	0.00	-128.79	-123.36	-173.62	1023	1040	-590	***
30	0.00	-136.10	-112.15	-152.93	909	926	-476	***
30	0.00	-142.28	-100.88	-132.79	795	812	-362	***
30	0.00	-147.39	-89.79	-113.38	683	700	-250	***
30	0.00	-151.55	-79.08	-94.89	574	590	-140	***
30	0.00	-154.86	-68.91	-77.51	469	485	-35	***
30	0.00	Additional extrados hinge		-61.42	378	361	63	
30	0.00	-159.36	-50.58	-46.84	280	297	153	
30	0.00	Intrados hinge		-33.96	201	217	233	
30	0.00	-161.77	-35.16	-22.98	133	149	301	
30	0.00	-162.45	-28.48	-14.09	78	94	356	
30	0.00	-162.88	-22.36	-7.43	37	54	396	
30	0.00	-163.15	-16.70	-3.15	11	27	423	
30	0.00	-163.28	-11.36	-1.33	0	16	434	
30	0.00	-163.33	-6.18	-2.02	4	21	429	
30	0.00	-163.28	-1.00	-0.26	24	40	410	
30	0.00	Extrados hinge		-10.98	60	76	374	
30	0.00	-162.88	10.00	-19.12	111	127	323	
30	0.00	-162.45	16.12	-29.55	177	193	257	
33	0.00	-161.66	23.69	-42.19	258	274	176	
76	0.00	-159.33	39.68	-56.54	345	361	89	
31	0.00	-154.03	68.58	-70.21	412	428	22	
78	0.00	-145.40	107.45	-79.74	432	450	-0	***
79	0.00	-134.41	149.05	-82.58	405	425	25	
18	0.00	-122.71	186.46	-78.15	347	368	82	
75	0.00	-111.78	215.96	-67.83	275	298	152	
33	0.00	Intrados hinge		-4.20	202	228	222	
31	0.00	-93.95	252.99	-39.92	138	164	286	
10	0.00	-86.00	265.27	-27.09	85	112	338	
32	0.00	-77.44	276.21	-16.92	45	74	376	
30	0.00	-67.66	286.44	-9.80	19	48	402	
30	0.00	Extrados hinge		-5.74	4	34	416	
30	0.00	-44.26	303.62	-4.61	-0	31	419	
30	0.00	-30.67	309.86	-6.48	5	36	414	
30	0.00	-15.87	314.04	-10.96	19	51	399	

Finding worst
Load case
>= 18 tonnes



Checking series of *** in the results table

- The lower single *** marks the central extrados hinge, and should always be present. The upper set of *** at the last column indicate flag lines where the thrust has touched or gone outside the extrados again.
- With no backing, three *** at more than one low this indicates failure. With backing, Archie-M does not attempt to interpret this situation. It marks rows where the thrust exits the arch ring still, but does not flag this as FAIL in auto-run. Instead it shows the "offset proportion" - the ratio of the position of the thrust to the ring thickness, so 1.0 is contact with the extrados ***see figure 4 below.***

Checking series of *** in the results table

Checking thrust line

With large live load factor a thrust line become thick and almost straight at top. This could crack to open at the deck. Therefore this indicate failure. Note: a bridge With backing depend on Engineers judgment, and by the way 414Tones of live load is not realistic.

EAC road loading LAW 2016

Max allowable single axle load is 10Tones

East African Community Vehicle Load Control Act, 2016

SECOND SCHEDULE

s.4(1)

AXLE LOAD LIMITS

Permissible Maximum Axle Load Limits

<i>Axle Type</i>	<i>Number of tyres on the axle</i>	<i>Type of tyre</i>	<i>Permissible limit (metric tonnes)</i>
Single	2	Conventional	8
Single	4	Conventional	10
Tandem	8	Conventional	18
	4	Super single	16
Tridem	12	Conventional	24
	6	Super single	22.5
Liftable single	4	Conventional	10
Liftable single	2	Super single	8.5

Permitted GVM by TANROADS

MINISTRY OF WORKS, TRANSPORT AND COMMUNICATION

TANZANIA NATIONAL ROADS AGENCY (TANROADS)

WEIGHBRIDGE OPERATIONAL MANUAL

December, 2018

Permitted GVM by TANROADS

S/N	ILLUSTRATION	TYPE OF VEHICLE	CONFIGURATION	PERMITTED GVM (TONS)
7		RIGID TRUCK & TRAILER	ALP SS,S4,DR8,D8 NUM - 1.2+22.22	54
8		RIGID TRUCK & TRAILER	ALP SD,S4,DR4,S4 NUM -11.2+2.2	45
9		RIGID TRUCK & TRAILER	ALP SD,S4,DR4,D8 NUM -11.2+2.22	53
10		RIGID TRUCK & TRAILER	ALP SD,S4,DR8,D8 NUM -11.2+22.22	56
11		RIGID TRUCK & TRAILER	ALP SS,D8,DR4,S4 NUM -1.22+2.2	46
12		RIGID TRUCK & TRAILER	ALP SS,D8,DR4,D8 NUM -1.22+2.22	54
13		RIGID TRUCK & TRAILER	ALP SS,D8,DR8,D8 NUM -1.22+22.22	56

Permitted GVM by TANROADS

S/N	ILLUSTRATION	TYPE OF VEHICLE	CONFIGURATION	PERMITTED GVM (TONS)
14		RIGID TRUCK & TRAILER	ALP SS,D8,DR4,T12 NUM -1.22+2.222	56
15		TRACTOR &SEMI TRAILER (ARTICULATED)	ALP SS,S4,S4 NUM -1.2-2	28
16		TRACTOR &SEMI TRAILER (ARTICULATED)	ALP SS,S4,D8 NUM 1.2-22	36
17		TRACTOR &SEMI TRAILER (ARTICULATED)	ALP SS,S4,T12 NUM 1.2-222	42
18		TRACTOR &SEMI TRAILER (ARTICULATED)	ALP SS,S4,S4,DR4,S4 NUM 1.2-2+2.2	48
19		TRACTOR &SEMI TRAILER (ARTICULATED)	ALP SS,S4,D8,DR4,S4 NUM 1.2-22+2.2	56

Results table

Archie-M - [Kisasa bridge.brg:2]

File Edit View Window Help

Bridge Name: Kisasa bridge Bridge Location: Kisasa Ddoma

Bridge Number: 2023.13 Number of spans: 2

SAFETY FACTORS

Factor for deadload: 1.00 Factor for superimposed deadload: 1.00 Factor for surfacing: 1.00

Factor for live load: 1.90 Factor for load effect: 1.00 Factor for material strength: 1.00

Applied distribution mode: Archie-M, BD21/97

Applied live load pressure: Active pressure

STRUCTURE PROPERTIES

Road shape: Flat line (1-point method)

Road points: (0, 1940)

Depth of surfacing: 300 [mm] Depth of overlay: 0 [mm]

Surface unit weight: 20.00 [kN/m³] Overlay unit weight: 1.00 [kN/m³]

Available width: 3000 [mm]

Min. effective width: 3000 [mm]

Fill unit weight: 18.00 [kN/m³] Fill phi: 30 degree

Left abutment: Base level: -1500 [mm] Height: 0 [mm] Width: 1500 [mm]

Right abutment: Base level: -1500 [mm] Height: 0 [mm] Width: 1500 [mm]

SPAN 1

Shape: Circular

Span: 6000 [mm] Rise: 1200 [mm] Q-rise: 0 [mm]

Ring thickness at crown: 440 [mm] Ring thickness at springing: 440 [mm]

Masonry unit weight: 20.00 [kN/m³] Masonry strength: 5.00 [MPa]

Mortar loss: 0 [mm]

Backing:

Span	Position	Type	Height [mm]	Width [mm]	Unit weight [kN/m³]	Strength [MPa]
1	left	Tangential	1340	0	20.00	5.00
1	right	Tangential	1340	0	20.00	5.00

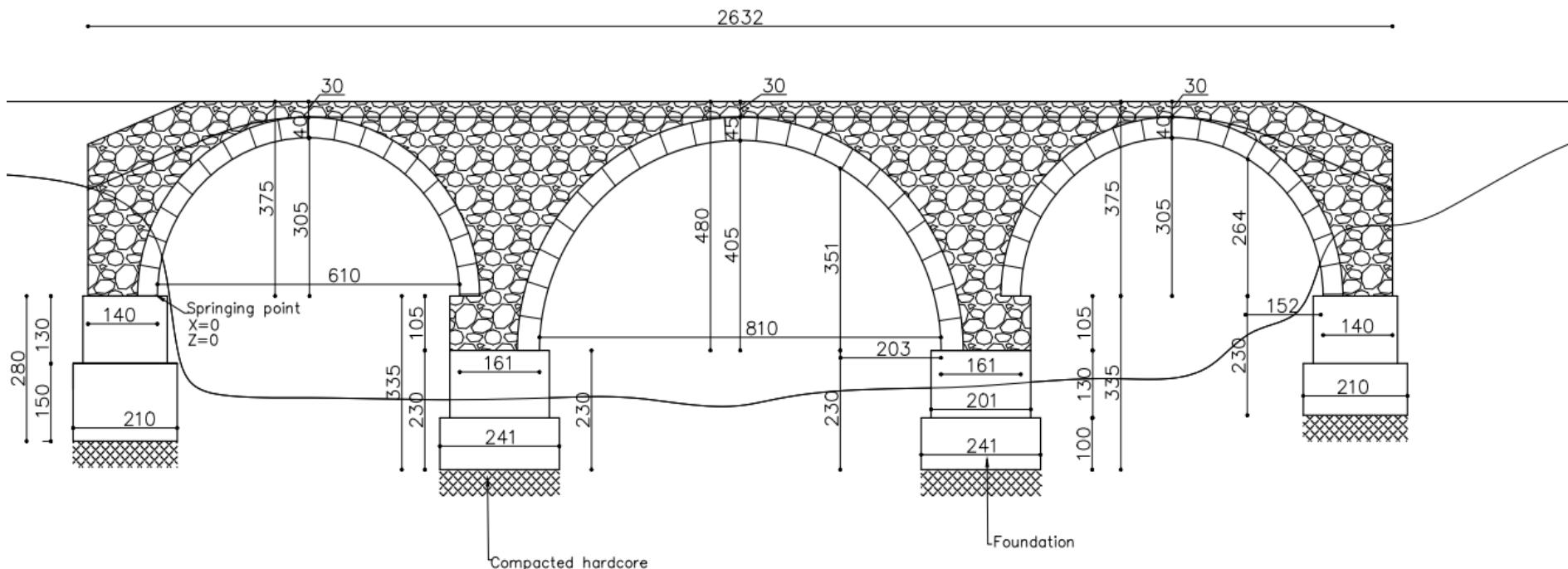
Segment Intrados.x Intrados.z Extrados.x Extrados.z Road.z Fx dead Fz dead My dead Fx live Fz live My live Fx passive Fx total Fz total My total Thrust in Thrust out Extra-Thrust

0	0	0	-303	319	1940	0.00	0.00	0.00	0.00	0.00	-131.70	-172.20	-4.57	-0	43	397	
1	122	112	-169	442	1940	0.00	-5.63	-1.11	0.00	-0.00	0.00	-131.70	-166.57	-9.05	22	64	376
2	248	219	-30	560	1940	0.00	-5.44	-1.00	0.00	-0.00	0.00	-131.70	-161.13	-14.28	50	90	350
3	378	321	113	672	1940	0.00	-5.24	-0.88	0.00	-0.00	0.00	-131.70	-155.89	-20.22	82	121	319
4	512	418	261	779	1940	0.00	-5.03	-0.77	0.00	-0.00	0.00	-131.70	-150.86	-26.85	119	158	282
5	650	510	412	881	1940	0.00	-4.81	-0.67	0.00	-0.00	0.00	-131.70	-146.04	-34.15	161	199	241
6	791	597	567	976	1940	0.00	-4.59	-0.57	0.00	-0.04	-0.00	-131.70	-141.41	-42.09	209	246	194
7	935	679	726	1066	1940	0.00	-4.37	-0.47	0.00	-1.94	-0.23	-131.70	-135.10	-50.16	261	297	143
8	1082	754	888	1149	1940	0.00	-4.16	-0.38	0.00	-7.86	-0.91	-131.70	-123.08	-57.00	313	348	92
9	1232	824	1053	1227	1940	0.00	-3.95	-0.30	0.00	-15.93	-1.67	-131.70	-103.20	-61.26	361	394	46
10	1384	889	1221	1297	1940	0.00	-3.75	-0.23	0.00	-22.79	-2.10	-131.70	-76.66	-62.15	397	427	13
11	1539	947	1392	1362	1940	0.00	-3.56	-0.16	0.00	-25.24	-1.98	-131.70	-47.87	-59.70	412	440	0
12	1696	1000	1564	1420	1940	0.00	-3.38	-0.10	0.00	-21.87	-1.43	-131.70	-22.62	-54.78	400	427	13
13	1855	1047	1739	1471	1940	0.00	-3.22	-0.05	0.00	-14.04	-0.76	-131.70	-5.36	-48.69	366	392	48
14	2015	1087	1916	1516	1940	0.00	-3.07	-0.01	0.00	-5.48	-0.26	-131.70	3.20	-42.57	321	346	94
15	2177	1122	2094	1554	1940	0.00	-2.95	0.04	0.00	-0.56	-0.04	-131.70	6.70	-36.96	276	301	139
16	2340	1150	2274	1585	1940	0.00	-2.84	0.07	0.00	0.00	0.00	-131.70	9.54	-31.76	234	260	180
17	2505	1172	2454	1609	1940	0.00	-2.76	0.11	0.00	0.00	0.00	-131.70	12.30	-26.95	195	221	219
18	2669	1187	2636	1626	1940	0.00	-2.69	0.14	0.00	0.00	0.00	-131.70	14.99	-22.55	160	186	254
19	2835	1197	2818	1637	1940	0.03	-2.65	0.19	-0.00	0.00	0.00	-131.73	17.64	-18.58	129	155	285
20	3000	1200	3000	1640	1940	0.01	-2.63	0.21	-0.00	0.00	0.00	-131.74	20.27	-15.02	101	127	313

[Click here to lean how to read table of results](#)

Table of results

- Basically, if there are *** in the last column, the thrust line touches the edge of the arch or falls outside the arch. So if you see more than 1 consecutive line showing ***, the thrust line falls outside the arch and we have failure if no backing, with full backing height and width it is unlikely have failure mechanism as bridge is very sound.
- The horizontal component of thrust at the springings (per metre width) can be read directly from the first and last rows of the span data, in F_x total. Similarly for vertical loads from F_z total.



Quiz 2

Quiz number 2

1. Analyze the structural capacity of Mkeha stone arch bridge. Use the following information

- i. Live load at rest
- ii. Factor of safety for dead loads 1.0
- iii. Factor of safety for live load you can adjust to suit your analysis.
- iv. Shear test 210KN/m²

Any Questions!

Link to design manual and other
related documents

**Stone Arch Bridge
Association**

Hosted by Enabel

- <https://stonearchbridges.org/>

End

Thank you all for your time